長年の夢だった「ガロア理論」についてまとめていく。
ガロア理論は大学の学部数学における一里塚であり、理論の美しさもさることながら、その背景にある歴史、数学者の逸話なども楽しめる。私はこの理論が好きすぎてパリに旅行に行った際に、ガロア所縁の地を旅したほど。
またガロア理論や群という考えは現代数学の基本にもなっている。
いつの日か自分で理解してブログにまとめたいと思っていた。
長年の夢だった「ガロア理論」についてまとめていく。
ガロア理論は大学の学部数学における一里塚であり、理論の美しさもさることながら、その背景にある歴史、数学者の逸話なども楽しめる。私はこの理論が好きすぎてパリに旅行に行った際に、ガロア所縁の地を旅したほど。
またガロア理論や群という考えは現代数学の基本にもなっている。
いつの日か自分で理解してブログにまとめたいと思っていた。
これまで,点列コンパクト,開集合,閉集合という空間の距離を数学的に表現してきました.
今回はこれら準備してきた概念を用いて,コンパクト空間上の連続関数が最大値・最小値を持つことを証明します.
関数のグラフを描いたり,イメージに頼ったりせず,定義と論理のみで証明できるようになることが数学を学ぶモチベーションであり,数学の素晴らしさなのです.
ボルツァーノ・ワイエルシュトラスの定理は,「任意の有界な実数列は収束する部分列を含む」ことを保証しています.これは実数の連続性公理でもあります.
この概念をn次元に一般化したときにも成り立つのか考えます.このような性質を点列コンパクトといいます.
これは開集合や閉集合,コンパクト空間にも繋がる重要な基礎概念です.
これらの概念はたまに教科書を見返したりしていますが,一度整理したいと思います.
解析や幾何の専門書を読んでいると必ずと言っていいほど現る「コンパクト」という概念.定義だけ見ても何のことやらさっぱりでイメージも掴めない難しい概念です.コンパクトのイメージとその恩恵や考える動機を考えてみます.