これまで,点列コンパクト,開集合,閉集合という空間の距離を数学的に表現してきました.
今回はこれら準備してきた概念を用いて,コンパクト空間上の連続関数が最大値・最小値を持つことを証明します.
関数のグラフを描いたり,イメージに頼ったりせず,定義と論理のみで証明できるようになることが数学を学ぶモチベーションであり,数学の素晴らしさなのです.
これまで,点列コンパクト,開集合,閉集合という空間の距離を数学的に表現してきました.
今回はこれら準備してきた概念を用いて,コンパクト空間上の連続関数が最大値・最小値を持つことを証明します.
関数のグラフを描いたり,イメージに頼ったりせず,定義と論理のみで証明できるようになることが数学を学ぶモチベーションであり,数学の素晴らしさなのです.
ボルツァーノ・ワイエルシュトラスの定理は,「任意の有界な実数列は収束する部分列を含む」ことを保証しています.これは実数の連続性公理でもあります.
この概念をn次元に一般化したときにも成り立つのか考えます.このような性質を点列コンパクトといいます.
これは開集合や閉集合,コンパクト空間にも繋がる重要な基礎概念です.
これらの概念はたまに教科書を見返したりしていますが,一度整理したいと思います.
これまで実数の連続性を公理とし,数列の極限について定義,それから導かれる様々な命題,定理を証明してきました.
その結果分かった実数の連続性公理と同値な条件(Bolzano–Weierstrass,Cauhy列の収束+アルキメデスの原理etc)
をまとめたいと思います.
どれを公理としてもよく,自分にあったものを議論の出発点としてよいのです.
我々は今,実数の連続性を公理とし,数列の極限について定義,様々な極限操作を論理的に厳密に扱えるようになりました.
そして,数列の収束を判定するCauchyの収束判定条件を証明しました.
実は,アルキメデスの原理を加えれば,これははじめに仮定した「実数の連続性公理」と同値なのです.
今回はこれを証明します.
数列が収束する条件があると便利です.極限値は分からなくても,数列がCauchy(コーシー)列であれば,収束することが分かります.今後も使う非常に有用な定理です.今回はCauchy列が収束することを分かりやすく証明します.