これまで,点列コンパクト,開集合,閉集合という空間の距離を数学的に表現してきました.
今回はこれら準備してきた概念を用いて,コンパクト空間上の連続関数が最大値・最小値を持つことを証明します.
関数のグラフを描いたり,イメージに頼ったりせず,定義と論理のみで証明できるようになることが数学を学ぶモチベーションであり,数学の素晴らしさなのです.
これまで,点列コンパクト,開集合,閉集合という空間の距離を数学的に表現してきました.
今回はこれら準備してきた概念を用いて,コンパクト空間上の連続関数が最大値・最小値を持つことを証明します.
関数のグラフを描いたり,イメージに頼ったりせず,定義と論理のみで証明できるようになることが数学を学ぶモチベーションであり,数学の素晴らしさなのです.
ボルツァーノ・ワイエルシュトラスの定理は,「任意の有界な実数列は収束する部分列を含む」ことを保証しています.これは実数の連続性公理でもあります.
この概念をn次元に一般化したときにも成り立つのか考えます.このような性質を点列コンパクトといいます.
これは開集合や閉集合,コンパクト空間にも繋がる重要な基礎概念です.
これらの概念はたまに教科書を見返したりしていますが,一度整理したいと思います.
これまで実数の連続性を公理とし,数列の極限について定義,それから導かれる様々な命題,定理を証明してきました.
その結果分かった実数の連続性公理と同値な条件(Bolzano–Weierstrass,Cauhy列の収束+アルキメデスの原理etc)
をまとめたいと思います.
どれを公理としてもよく,自分にあったものを議論の出発点としてよいのです.
我々は今,実数の連続性を公理とし,数列の極限について定義,様々な極限操作を論理的に厳密に扱えるようになりました.
そして,数列の収束を判定するCauchyの収束判定条件を証明しました.
実は,アルキメデスの原理を加えれば,これははじめに仮定した「実数の連続性公理」と同値なのです.
今回はこれを証明します.
数列が収束する条件があると便利です.極限値は分からなくても,数列がCauchy(コーシー)列であれば,収束することが分かります.今後も使う非常に有用な定理です.今回はCauchy列が収束することを分かりやすく証明します.
我々は今,実数の連続性を公理とし,数列の極限について定義しました.ここから得られる結果として,有界な単調増加数列の収束先を論じます.またその結果を用いて,一見当たり前のように思えるアルキメデスの原理を厳密に証明します.