微分積分を速度と距離の関係で理解する(自然科学研究会2 生活の中の数学 その2)


会社の同僚の方とたまに自然科学研究会なるものを開催しております。
自然科学のあるテーマに沿って自由にプレゼンするものです。
第二回では私は「生活の中の数学」というテーマでプレゼンしました。

今回は,高校数学の一里塚でもある微分積分と速度・距離の関係について紹介します.

続きを読む →

収束を求めるのに便利!はさみうちの原理の使い方とその厳密な証明


数列の収束を求めるのに様々なテクニックがあります.

その一つにはさみうちの原理というものがあります.

これは収束性を求めることが難しい数列を簡単な数列で下からと上から評価してあげて,目的の数列の極限値を求めるものです.高校数学ではあいまいに説明されていたこの原理を,ε-N論法から厳密かつ分かりやすく解説します.

続きを読む →

当たり前のようだけど超役に立つ!三角不等式のまとめ


不等式の問題でよく出る「三角不等式」というものがあります.角を曲がるのではなくて最短距離を斜めに横断した方が断然早いという一見当たり前なものですが,様々なバリエーションがあり,奥が深いです.また数列の極限の評価等によく使われます.様々なバリーションはたまに忘れてしまうので,まとめておきます.

続きを読む →

数列が収束するとは?数列の収束の計算方法について解説(解析学 第I章 実数と連続3)


実数の厳密な定義ができたところで,次は高校数学でも学んだ数列の収束について定義したいと思います.高校数学ではだんだんとその値に近くことと定義しましたが,ε-N論法を用いて定義を行い,数列の収束問題の計算方法について定義から導かれる結論を解説します.

続きを読む →

解析学で必須!ε-δ論法は後出しジャンケン


大学で数学をやったことがある方であれば,ε-δ論法というものを聞いたことがあると思います.イプシロン-デルタ論法と読みます.これは何かというと,解析学で必要な“収束”という概念を扱うために必要な論法です.簡単にいうと,”どんどん近づく”と感覚を数学的に厳密に定義したものです.

今回はε-δ論法についてご説明します.

続きを読む →

平方根が存在することをどう証明するか?(解析学 第I章 実数と連続2)


前回,有理数では説明のできないルートなどを説明しようと実数の連続性公理を約束毎と決めました.今回は実数の定義を行い,\(\sqrt 2\)が存在することを保証します.つまり,四則演算や実数の連続性公理さえ認めてれば,矛盾なく解析学の体系を説明できるということです.

続きを読む →

議論の出発点〜実数の連続性とは?〜(解析学 第I章 実数と連続1)


微分積分自然科学を語る上で無くてはならない宇宙の共通言語です.微分積分は高校数学で習いますが,実数や収束について厳密ではありません.本稿では,(自らの理解のために)実数の公理からはじめて,収束や微分・積分を定義し,項別微積分,広義積分等を厳密に理解することを目標とします.

続きを読む →